Physics 201

Name _____

Exam 1 – Electrostatics

February 16, 2010

This is a closed book examination but during the exam you may refer to a 3"x5" note card with words of wisdom you have written on it. There is extra scratch paper available. Please <u>explain</u> your answers. Your explanation is worth 3/4 of the points on all questions.

A general reminder about problem solving:

r general reminaer abeat prebient centing.	
Focus	 Modify schematic and coordinate system
 Draw a picture of the problem 	(if needed)
 What is the question? What do you 	 Write general equations
want to know?	Execute
 List known and unknown quantities 	 Write equations with variables
 List assumptions 	 Do you have sufficient equations to
Physics	determine your unknowns?
 Determine approach – What physics 	 Simplify and solve
principles will you use?	Evaluate
 Pick a coordinate system 	 Check units
 Simplify picture to a schematic (if 	 Why is answer reasonable?
needed)	 Check limiting cases!
• Plan	Show All Your Work!
 Divide problem into sub-problems 	

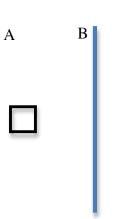
The next two questions concern an electron (charge $-q_e$) and an alpha particle (charge $+2q_e$) that are separated by 16 nm in a region of space without any other charges.

- 1. [4 PTS] Compare the electrostatic force on the alpha particle, F_a , and the force on the electron, F_e .
 - a) $4F_e = F_a$
 - b) $2F_e = F_a$
 - c) $F_e=2F_a$
 - d) $F_a=4F_a$
 - e) none of these

Explain:

- 2. [4 PTS] The electron and alpha particle are moved apart so they are now separated by 33 nm.
 - a) F_e increases and F_{α} decreases
 - b) F_e decreases and F_{α} increases
 - c) Both F_e and F_{α} decrease
 - d) Both F_e and F_a increase
 - e) none of these

Explain:

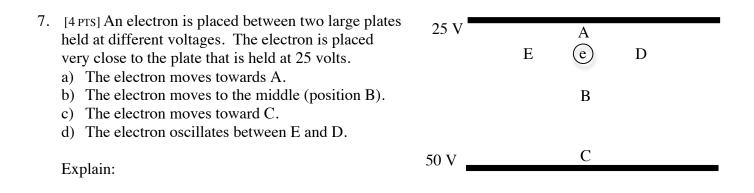

- 3. [4 PTS] A single point charge (Q) is located at the center of an imaginary sphere of radius 1m and a much larger imaginary cylinder of diameter 2 m and side length 10 m. Compare the electric flux through each.
 - a) The electric flux is zero through both the sphere and cylinder.
 - b) The magnitude of the electric flux is greater through the sphere.
 - c) The magnitude of the electric flux is greater through the cylinder.
 - d) There is the same positive electric flux through both the sphere and cylinder.
 - e) There is the same negative electric flux through both the sphere and cylinder.
 - f) None of these.

Explain:

The next two questions concern a hollow metal cube that is placed between two large charged plates. Both plate A and plate B are held at 90 volts. The plates are separated by 90 cm and the metal cube is placed 30 cm from plate A (so the cube is closer to plate A).

- 4. [4 PTS] The potential on the surface of the metal cube
 - a) is 120 volts.
 - b) is 90 volts.
 - c) is 30 volts.
 - d) must be zero.
 - e) can not be determined. More information is needed.

nined. N


Explain:

- 5. [4 PTS] The electric field inside the metal cube
 - a) is proportional to $1/r^2$
 - b) is positive pointing towards plate A.
 - c) is zero.
 - d) is positive pointing towards plate B.
 - e) can not be determined without the size of the cube.

Explain:

- 6. [4 PTS] A large neutral metal disk is placed on an insulating post. A negatively charged balloon is brought near it but does not touch it. The balloon is taken away. The disk is now
 - a) charged but we cannot know its polarity.
 - b) neutral (has no net charge).
 - c) negatively charged.
 - d) positively charged.
 - e) none of these.

Explain:

The next two problems can be done on the back of your exam or on additional paper.

- 8. [10 PTS] An electron that is initially at rest is placed between two parallel plates. At time t = 0 sec an electric field (0.5 kN/C) is turned on between the plates. Note: $q_e = -1.6 \times 10^{-19}$ C and $m_e = 9.1 \times 10^{-31}$ kg.
 - a) What is the velocity of the electron after it has traveled 30 cm?
 - b) How long does it take to travel 30 cm? NOTE: Think kinematics.
- 9. [10 PTS] A ball of negative charge has a constant charge density, 7.6×10^{-3} C/m³. The ball has a radius R_B = 30 cm.
 - a) Draw a graph of the electric field inside and outside the sphere?
 - b) What is the potential difference between $r_1 = 10$ cm and $r_2 = 20$ cm?
 - c) What is the potential difference between $r_1 = 40$ cm and $r_2 = 60$ cm?

Possibly useful mathematical relationships:

Law of Cosines $c^2 = a^2 + b^2 - 2ab\cos(\theta)$ which for $\theta = 90^\circ$ is the Pythagorean theorem $c^2 = a^2 + b^2$ Trigonometric identities:

$$\sin^{2}(\theta) + \cos^{2}(\theta) = 1$$

$$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$$

$$\cos(2\theta) = \cos^{2}(\theta) - \sin^{2}(\theta) = 2\cos^{2}(\theta) - 1 = 1 - 2\sin^{2}(\theta)$$

Derivative $\frac{d}{du}Cu^n = nCu^{n-1}$ and anti-derivative (integral) $\int Cu^n du = \frac{1}{n+1}Cu^{n+1} + const.$ of a polynomial Derivative $\frac{d}{du}k\sin(au) = ka\cos(au)$ and integral $\int k\sin(au)du = -\frac{k}{a}\cos(au) + const.$ of the sine function Derivative $\frac{d}{du}k\cos(au) = -ka\sin(au)$ and integral $\int k\cos(au)du = \frac{k}{a}\sin(au) + const.$ of the cosine function The Chain Rule $\frac{d}{dz}f(u) = \frac{d}{dz}u\frac{d}{du}f(u)$